快速发布求购 登录 注册
行业资讯行业财报市场标准研发新品会议盘点政策本站速递

科学岛团队在全固态离子选择性电极的转导机制研究方面取得新进展

研发快讯 2024年05月27日 11:12:04来源:合肥物质科学研究院 作者:刘子豪 20129
摘要全固态离子选择性电极以其操作简便、反应迅速等优势广泛应用在水质和体液分析中。然而,长期稳定性测试过程中的电位漂移问题影响着测量结果的准确性,阻碍了全固态离子选择性电极的进一步实际应用。

  【仪表网 研发快讯】近期,中国科学院合肥物质院固体所环境材料与污染控制研究部李培华博士等构筑了由亲脂性阴离子触发快速离子-电子转导的高稳定全固态钙离子选择性电极,并通过同步辐射技术揭示了固体转导层参与电位响应时的作用机制。相关研究成果作为补充封面发表在Analytical Chemistry上。
 
  全固态离子选择性电极以其操作简便、反应迅速等优势广泛应用在水质和体液分析中。然而,长期稳定性测试过程中的电位漂移问题影响着测量结果的准确性,阻碍了全固态离子选择性电极的进一步实际应用。固体接触层作为离子-电子信号相互转化的转导者,其电容和疏水性是影响电位稳定性的关键。因此,设计具有大电容且高疏水的转导层,并探究其在参与电位响应时的作用机制对全固态离子选择性电极稳定性的提高以及转导层材料的精准设计具有重要的指导意义。
 
  此前,研究团队通过构筑SnS2-MoS2异质结作为转导层稳定界面电位 (ACS Sens. 2024, 9, 1, 415-423),发现SnS2-MoS2的界面电子可通过Sn-S-Mo异质结自发地从SnS2转移到MoS2,从而调节表面电子结构并加速电子转移以增大电容。以SnS2-MoS2异质结为转导层构建的钠离子选择性电极实现了对钠离子的稳定高效检测。基于此,团队利用表面活性剂十六烷基三甲基溴化铵 (CTAB) 对CuS进行表面疏水调控,合成了兼具优异氧化还原电容和高疏水性的CunS-50纳米花,以CunS-50为转导层构建的全固态钙离子选择性电极在浓度为10-1 ~ 10-7 M的线性范围内实现了对钙离子的稳定检测。
 
  研究人员进一步利用同步辐射技术发现,离子选择性膜中的亲脂性阴离子 (TFPB-) 在电位响应时转移到ISM/CunS-50界面,参与CunS-50中Cu+/Cu2+的氧化还原过程,促进自由电子的产生,加速了离子-电子的转导,将离子信号转化为电子信号传输到导电衬底,从而稳定电极电位。该工作为全固态离子选择性电极的氧化还原转导机制提供了更深入的理解,并为由亲脂性阴离子引发离子-电子转导的氧化还原型固体转导层材料的设计提供了新思路。
 
  上述研究工作得到了国家重点研发计划项目、中国科学院青年创新促进会及国家自然科学基金等项目的资助。
 
  CunS-50参与电位响应的机理探究:(a-b) CunS-50/Ca2+-ISE对TFPB-在o-NPOE溶液中的电位响应和校准曲线; (c) 归一化Cu K边XANES光谱; (d) 归一化S K边XANES光谱; (e, f) 长期电位稳定性测试前后ISM/CunS-50界面的截面电镜图。

我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

版权与免责声明
  • 凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
  • 合作、投稿、转载授权等相关事宜,请联系本网。联系电话:0571-87759945,QQ:1103027433。
广告招商
今日换一换
新发产品更多+

客服热线:0571-87759942

采购热线:0571-87759942

媒体合作:0571-87759945

  • 仪表站APP
  • 微信公众号
  • 仪表网小程序
  • 仪表网抖音号
Copyright ybzhan.cn    All Rights Reserved   法律顾问:浙江天册律师事务所 贾熙明律师   仪表网-仪器仪表行业“互联网+”服务平台
意见反馈
我知道了